skip to main content


Search for: All records

Creators/Authors contains: "Kunze, Eric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Horizontal and vertical wavenumbers ( k x , k z ) immediately below the Ozmidov wavenumber ( N 3 / ε ) 1/2 are spectrally distinct from both isotropic turbulence ( k x , k z > 1 cpm) and internal waves as described by the Garrett–Munk (GM) model spectrum ( k z < 0.1 cpm). A towed CTD chain, augmented with concurrent Electromagnetic Autonomous Profiling Explorer (EM-APEX) profiling float microstructure measurements and shipboard ADCP surveys, are used to characterize 2D wavenumber ( k x , k z ) spectra of isopycnal slope, vertical strain, and isopycnal salinity gradient on horizontal wavelengths from 50 m to 250 km and vertical wavelengths of 2–48 m. For k z < 0.1 cpm, 2D spectra of isopycnal slope and vertical strain resemble GM. Integrated over the other wavenumber, the isopycnal slope 1D k x spectrum exhibits a roughly +1/3 slope for k x > 3 × 10 −3 cpm, and the vertical strain 1D k z spectrum a −1 slope for k z > 0.1 cpm, consistent with previous 1D measurements, numerical simulations, and anisotropic stratified turbulence theory. Isopycnal salinity gradient 1D k x spectra have a +1 slope for k x > 2 × 10 −3 cpm, consistent with nonlocal stirring. Turbulent diapycnal diffusivities inferred in the (i) internal wave subrange using a vertical strain-based finescale parameterization are consistent with those inferred from finescale horizonal wavenumber spectra of (ii) isopycnal slope and (iii) isopycnal salinity gradients using Batchelor model spectra. This suggests that horizontal submesoscale and vertical finescale subranges participate in bridging the forward cascade between weakly nonlinear internal waves and isotropic turbulence, as hypothesized by anisotropic turbulence theory. 
    more » « less
  2. Abstract

    Generating mechanisms and parameterizations for enhanced turbulence in the wake of a seamount in the path of the Kuroshio are investigated. Full-depth profiles of finescale temperature, salinity, horizontal velocity, and microscale thermal-variance dissipation rate up- and downstream of the ∼10-km-wide seamount were measured with EM-APEX profiling floats and ADCP moorings. Energetic turbulent kinetic energy dissipation ratesand diapycnal diffusivitiesabove the seamount flanks extend at least 20 km downstream. This extended turbulent wake length is inconsistent with isotropic turbulence, which is expected to decay in less than 100 m based on turbulence decay time ofN−1∼ 100 s and the 0.5 m s−1Kuroshio flow speed. Thus, the turbulent wake must be maintained by continuous replenishment which might arise from (i) nonlinear instability of a marginally unstable vortex wake, (ii) anisotropic stratified turbulence with expected downstream decay scales of 10–100 km, and/or (iii) lee-wave critical-layer trapping at the base of the Kuroshio. Three turbulence parameterizations operating on different scales, (i) finescale, (ii) large-eddy, and (iii) reduced-shear, are tested. Averageεvertical profiles are well reproduced by all three parameterizations. Vertical wavenumber spectra for shear and strain are saturated over 10–100 m vertical wavelengths comparable to water depth with spectral levels independent ofεand spectral slopes of −1, indicating that the wake flows are strongly nonlinear. In contrast, vertical divergence spectral levels increase withε.

     
    more » « less
  3. Abstract

    While lee-wave generation has been argued to be a major sink for the 1-TW wind work on the ocean’s circulation, microstructure measurements in the Antarctic Circumpolar Currents find dissipation rates as much as an order of magnitude weaker than linear lee-wave generation predictions in bottom-intensified currents. Wave action conservation suggests that a substantial fraction of lee-wave radiation can be reabsorbed into bottom-intensified flows. Numerical simulations are conducted here to investigate generation, reabsorption, and dissipation of internal lee waves in a bottom-intensified, laterally confined jet that resembles a localized abyssal current over bottom topography. For the case of monochromatic topography with |kU0| ≈ 0.9N, wherekis the along-stream topographic wavenumber, |U0| is the near-bottom flow speed, andNis the buoyancy frequency; Reynolds-decomposed energy conservation is consistent with linear wave action conservation predictions that only 14% of lee-wave generation is dissipated, with the bulk of lee-wave energy flux reabsorbed by the bottom-intensified flow. Thus, water column reabsorption needs to be taken into account as a possible mechanism for reducing the lee-wave dissipative sink for balanced circulation.

     
    more » « less
  4. Abstract Destratification and restratification of a ~50-m-thick surface boundary layer in the North Pacific Subtropical Front are examined during 24–31 March 2017 in the wake of a storm using a ~5-km array of 23 chi-augmented EM-APEX profiling floats ( u , υ , T , S , χ T ), as well as towyo and ADCP ship surveys, shipboard air-sea surface fluxes, and parameterized shortwave penetrative radiation. During the first four days, nocturnal destabilizing buoyancy fluxes mixed the surface layer over almost its full depth every night followed by restratification to N ~ 2 × 10 −3 rad s −1 during daylight. Starting on 28 March, nocturnal destabilizing buoyancy fluxes weakened because weakening winds reduced latent heat flux. Shallow mixing and stratified transition layers formed above ~20-m depth. A remnant layer in the lower part of the surface layer was insulated from destabilizing surface forcing. Penetrative radiation, turbulent buoyancy fluxes, and horizontal buoyancy advection all contribute to its restratification, closing the budget to within measurement uncertainties. Buoyancy advective restratification (slumping) plays a minor role. Before 28 March, measured advective restratification is confined to daytime; is often destratifying; and is much stronger than predictions of geostrophic adjustment, mixed-layer eddy instability, and Ekman buoyancy flux because of storm-forced inertial shear. Starting on 28 March, while small, the subinertial envelope of measured buoyancy advective restratification in the remnant layer proceeds as predicted by mixed-layer eddy parameterizations. 
    more » « less
  5. Abstract

    Closely spaced CTD stations showed elevated oxygen within Monterey Submarine Canyon. Anomalously high (2–5 μmol kg−1) dissolved oxygen was found between 600–1,100 m in the O2minimum, co‐located with a turbulence hotspot caused by convergence of upcanyon, semidiurnal internal tidal energy flux. Furthermore, the oxygen anomaly extended >10 km downcanyon at the same depth and isopycnals of a previously identified intrusion predicted from buoyancy conservation. We show that dissolved oxygen and fine suspended particles act as independent tracers to (a) validate previous microstructure observations of intense turbulence extending >400 m above the bed (mab) at the canyon hotspot, and (b) track boundary‐interior exchange driven by mixing in the form of isopyncal‐spreading of anomalies away from a near‐boundary source. This study demonstrates the use of oxygen, commonly measured with shipboard profiling, as a tool for tracking mixing and lateral dispersal.

     
    more » « less
  6. Microstructure measurements in Drake Passage and on the flanks of Kerguelen Plateau find turbulent dissipation rates ε on average factors of 2–3 smaller than linear lee-wave generation predictions, as well as a factor of 3 smaller than the predictions of a well-established parameterization based on finescale shear and strain. Here, the possibility that these discrepancies are a result of conservation of wave action E/ ωL= E/| kU| is explored. Conservation of wave action will transfer a fraction of the lee-wave radiation back to the mean flow if the waves encounter weakening currents U, where the intrinsic or Lagrangian frequency ωL= | kU| ↓ | f| and k the along-stream horizontal wavenumber, where kU ≡ k ⋅ V. The dissipative fraction of power that is lost to turbulence depends on the Doppler shift of the intrinsic frequency between generation and breaking, hence on the topographic height spectrum and bandwidth N/ f. The partition between dissipation and loss to the mean flow is quantified for typical topographic height spectral shapes and N/ f ratios found in the abyssal ocean under the assumption that blocking is local in wavenumber. Although some fraction of lee-wave generation is always dissipated in a rotating fluid, lee waves are not as large a sink for balanced energy or as large a source for turbulence as previously suggested. The dissipative fraction is 0.44–0.56 for topographic spectral slopes and buoyancy frequencies typical of the deep Southern Ocean, insensitive to flow speed U and topographic splitting. Lee waves are also an important mechanism for redistributing balanced energy within their generating bottom current.

     
    more » « less